Mathematical Methods of Quantum Mechanics

Chiara Boccato Presentation of PhD Courses in Mathematics 2024/2025

Mathematical Methods of Quantum Mechanics

Quantum mechanics: central theory in physics, describing elementary particles, superconductors, quantum computers,

Challenging mathematical problems in functional analysis, partial differential equations and operator theory. Very active current research topic.

Mathematical Methods of Quantum Mechanics

 $\ensuremath{\textbf{Course Description:}}$ Introduction to the rigorous mathematical framework of quantum mechanics

- Operator theory, self-adjointness
- Time-dependent Schrödinger equation, Schrödinger operators
- Symmetries and conservations laws
- Existence of stationary states

The course will conclude with an introduction to current problems in many-body systems (nonlinear Schrödinger equation, stability of matter, phase transitions, universality)

Prerequisites: Basic notions of analysis.

Course Period: Last week of February until the last week of May (30 hours). **Exam**: Oral examination.

The course is directed to Master's students and PhD students.

About me: chiara.boccato@unipi.it, http://www.chiaraboccato.com/

References

Main references

- Gerald Teschl: Mathematical Methods in Quantum Mechanics, With Applications to Schrödinger Operators https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/index.html
- Jan Philip Solovej: Many Body Quantum Mechanics, Lecture Notes https://web.math.ku.dk/~solovej/MANYBODY/mbnotes-ptn-5-3-14.pdf

Other references

- Hamiltonian mechanics: Chapter 3 in Bergfinnur Duurhus, Jan Philip Solovej, Mathematical Physics, lecture notes https://noter.math.ku.dk/mathphys2014.pdf
- Overview: Stephen J. Gustafson, Israel Michael Sigal, Mathematical Concepts of Quantum Mechanics. https://www.math.utoronto.ca/~sigal/semlectnotes/1.pdf
- Constructive approach to functional analysis: Elliott H. Lieb, Michael Loss, Analysis.